비교하고 잘 사는, 다나와 : 가격비교 사이트

다나와 앱
다나와 앱 서비스 목록
다나와 APP
다나와 가격비교 No.1 가격비교사이트 다나와 앱으로
간편하게 최저가를 확인하세요.
- -
QR코드
빈 이미지
다나와 앱 서비스 목록 닫기

2+3=X를 위해 13번 고민하는 AI... 텐센트, AI 모델의 '오버씽킹' 현상 분석

2025.01.04. 04:58:33
조회 수
317
20
댓글 수
4

공유하기

레이어 닫기

지금 보는 페이지가 마음에 든다면
공유하기를 통해 지인에게 소개해 주세요.

로그인 유저에게는 공유 활동에 따라
다나와 포인트가 지급됩니다.

자세히 >

URL이 복사되었습니다.
원하는 곳에 붙여넣기(Ctrl+V)하세요.

레이어 닫기

Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs



중국의 기술 기업 텐센트가 설립한 AI랩과 상하이자오통대학교 연구진이 발표한 최신 논문에 따르면, 최근 주목받고 있는 오픈AI(OpenAI)의 o1 모델과 유사한 AI 모델들이 단순한 문제 해결에도 과도한 연산 자원을 사용하는 '오버씽킹(overthinking)' 현상을 보이는 것으로 나타났다. 이들 o1류 모델들은 인간과 같이 장시간 생각하는 방식을 모방해 문제 해결 능력을 향상시키고 있지만, 이 과정에서 불필요한 자원 낭비가 발생하고 있다는 것이 연구진의 분석이다.

AI 모델의 비효율적 사고방식 발견

연구진은 '2 더하기 3은 얼마인가?'라는 간단한 질문을 던졌을 때, 기존 AI 모델들은 평균 7개의 토큰만을 사용해 답을 도출한 반면, o1류 모델들은 최대 936개의 토큰을 사용하며 같은 답에 도달하는 것을 확인했다. 이는 기존 모델 대비 1,953% 많은 연산 자원을 소비하는 것이다. 특히 QwQ-32B-Preview 모델의 경우 하나의 문제에 대해 13가지의 서로 다른 해결 방식을 제시했는데, 기본적인 산술 계산부터 시작해 작은 단계로 나누기, 사과 개수 세기 등의 실제 물체 비유, 이진법과 로마 숫자 변환을 통한 검증, 심지어 대수적 방정식 활용까지 다양한 접근법을 시도했다. 연구진은 이러한 현상이 모델의 추론 및 의사결정 과정에서의 근본적인 한계를 보여준다고 지적했다.


효율성 평가를 위한 새로운 지표 도입

연구진은 AI 모델의 효율성을 평가하기 위해 결과(outcome) 관점과 과정(process) 관점의 두 가지 새로운 평가 지표를 제시했다. 결과 효율성 지표(ξO)는 정답을 찾는 데 필요한 최소 토큰 수와 실제 사용된 토큰 수의 비율을 측정하며, 과정 효율성 지표(ξP)는 해결 과정의 다양성과 중복성을 평가한다. 연구 결과 92% 이상의 경우에서 첫 번째 해결 시도에서 이미 정답을 찾았음에도 불구하고, 모델은 계속해서 새로운 해결 방식을 시도하며 불필요한 연산을 수행했다.

난이도별 모델 성능과 오버씽킹 패턴

연구진은 다양한 난이도의 수학 문제 데이터셋을 활용해 실험을 진행했다. 초등학교 수준의 ASDIV(2,305개 문제), 중학교 수준의 GSM8K(1,319개 문제), 고등학교 수학 경시대회 수준의 MATH500 등이 활용됐다. 흥미롭게도 o1류 모델들은 쉬운 문제일수록 더 많은 해결 방식을 시도하는 경향을 보였다. QwQ-32B-Preview 모델은 ASDIV 테스트에서 평균 3.6개의 해결책을 제시한 반면, MATH500에서는 2.8개를 제시했다. 특히 MATH500의 난이도 1-2 단계에서는 평균 3.75회의 해결 시도를, 4-5 단계에서는 3.0회의 시도를 보여 난이도가 낮을수록 오버씽킹이 심해지는 것으로 나타났다.

효율성 향상을 위한 해결책 제시

연구진은 이러한 비효율성을 개선하기 위해 여러 최적화 방법을 제안했다. 감독형 미세조정(SFT), 직접 선호도 최적화(DPO), 추론 선호도 최적화(RPO), 단순 선호도 최적화(SimPO) 등의 방법을 시도했으며, 특히 First-Correct Solutions(FCS), FCS+Reflection, Greedily Diverse Solutions(GDS) 등의 전략을 통해 효율성 개선을 도모했다. 이를 통해 QwQ-32B-Preview 모델은 MATH500 테스트셋에서 토큰 생성량을 48.6% 줄이면서도 정확도를 유지했다. 더 어려운 문제를 다루는 GPQA에서는 토큰 사용량을 32.7% 줄이면서 정확도를 58.6%에서 59.1%로 향상시켰다.

연구의 한계와 향후 과제

현재 이 연구는 QwQ-32B-Preview와 DeepSeek-R1-Preview 두 모델만을 분석했다는 한계가 있다. 또한 솔루션 다양성 측정을 위해 GPT-4o를 사용한 점도 비용과 재현성 측면에서 한계로 지적됐다. 연구진은 향후 문제 복잡도에 따라 동적으로 조정되는 연산 전략 개발, 더 넓은 모델 일반화를 위한 효율성 지표 개선, 100만 개 이상의 인스턴스를 포함하는 대규모 데이터셋을 활용한 검증 등을 추진할 계획이라고 밝혔다.

해당 논문의 원문은 링크에서 확인할 수 있다.

기사는 클로드 3.5 Sonnet과 챗GPT-4o를 활용해 작성되었습니다.




AI Matters 뉴스레터 구독하기

공감/비공감

공감/비공감안내도움말 보기
유용하고 재미있는 정보인가요?
공감이 된다면 공감 버튼을, 그렇지 않다면 비공감 버튼을 눌러 주세요!
공감이나 비공감을 선택 하는 경우 다나와 포인트를 적립해 드립니다. ※ 공감 버튼의 총 선택 횟수는 전체 공개입니다. 비공감 버튼의 선택 여부는 선택한 본인만 알 수 있습니다.
최신 일반뉴스 전체 둘러보기
1/1
오픈AI, 챗GPT '슈퍼 AI 비서' 발전 계획 공개… "헬스장 가입부터 변호사 연락까지" (1) AI matters
24시간 만에 업무 활용 가능 수준 AI 솔루션 완성하는 로봇? MS 차세대 에이전트 기술 공개 AI matters
"AI 때문에 망했다" vs "AI로 대박났다"... 성패를 가르는 이것 AI matters
AI 뒤처진 애플, iOS 19 대거 개편… “AI보다 디자인 변화가 핵심” AI matters
내 캐릭터로 애니메이션 제작 가능… 캐릭터AI, 씬·아바타FX·스트림 등 멀티모달 창작 기능 공개 AI matters
이번엔 모바일서 통할까… 어도비, 생성형 AI 기능 탑재 포토샵 안드로이드 버전 출시 AI matters
美 빅3 음반사, AI 기업과 음악 활용 라이선스 협상 추진 AI matters
폭스바겐 노조 2만명 해고 동의, 볼프스부르크 공장 '4일 근무제' 전환도 (1) 오토헤럴드
'치열한 경쟁 속 BYD 압도적' 5월 中 신에너지차 판매 꾸준한 상승 중 오토헤럴드
폭스바겐, 미국에 수십억 달러 투자로 상호관세 판도 바꿀 특혜에 기대감 오토헤럴드
볼보 전기 SUV 'EX30', EV 어워즈 2025 ‘심사위원 선정 혁신 전기차’ 등극 오토헤럴드
폴스타, 'EV 어워즈 2025'서 폴스타4 '심사위원 선정 혁신 전기차' 수상 오토헤럴드
폴스타 4, EV 어워즈 2025 ‘심사위원 선정 혁신 전기차’ 수상 글로벌오토뉴스
기아 EV4, ‘대한민국 올해의 전기차’ 선정…아이오닉9은 소비자 선택상 수상 글로벌오토뉴스
한국타이어, 미국 청소년 단체 설립에 2만 달러 기부…지역 사회 지원 활동 지속 글로벌오토뉴스
볼보 EX30, ‘EV 어워즈 2025’ 심사위원 선정 올해의 전기차 수상 글로벌오토뉴스
포드·현대차, 美 5월 판매 증가…관세 우려에 소비자 구매 앞당겨 글로벌오토뉴스
중국의 희토류 수출 규제, 글로벌 자동차 산업 생산 차질 우려 글로벌오토뉴스
독일 자동차 산업, 바닥 뚫나…업황지수 또 하락 글로벌오토뉴스
젬블로컴퍼니, 라온, 쿠키런 보드게임 앞세워 천안 K-컬처 박람회 참가 게임동아
이 시간 HOT 댓글!
1/4